
III. FOURIER TRANSFORM ON L2(R)

In this chapter we will discuss the Fourier transform of Lebesgue square inte-

grable functions defined on R. To fix the notation, we denote

L2(R) = {f : R→ C |
∫ ∞

−∞
|f(t)|2dt < ∞}.

Unlike L1(R) we have discussed in the last chapter, L2(R) is a Hilbert space with

an inner product defined as follows: For any f, g ∈ L2(R),

〈f, g〉L2(R) =
∫ ∞

−∞
f(t)g(t)dt.

Note that 〈f, g〉L2(R) is well-defined for any f, g ∈ L2(R), since in the case of L2(R),

Hölder’s inequality guarantees that for any f, g ∈ L2(R),
∫ ∞

−∞
| f(t)g(t) | dt ≤ (

∫ ∞

−∞
| f(t) |2 dt)

1
2 · (

∫ ∞

−∞
| g(t) |2 dt)

1
2 .

The norm || · ||L2(R) induced by 〈f, g〉L2(R) has the following form:

||f ||L2(R) = (
∫ ∞

−∞
|f(t)|2dt)

1
2 .

For convenience, we usually write ||·||2 in stead of ||·||L2(R). The concepts of Cauchy

sequence in L2(R) and convergence of sequence of functions in L2(R) can be

defined in exactly the same way as we have done for general Hilbert space. Also,

L2(R) being a Hilbert space, every Cauchy sequence in L2(R) converges to some

function in L2(R). Since L2(R) is not contained in L1(R), there are functions in

L2(R) that do not belong to L1(R). For an arbitrary function f ∈ L2(R),
∫ ∞

−∞
f(x)e−iξxdx

may not even be well defined. Our goal in this chapter is to figure out a way

of defining the Fourier transform for all functions in L2(R), and find some of its

properties. We begin by looking at the functions in L1(R) ∩ L2(R) and finding

out some useful properties of their Fourier transform. We say that a subset S of

a Hilbert space H is dense in H if for any vector x ∈ H, there is a sequence

{xn}∞n=1 ⊂ S such that {xn}∞n=1 converges to x under the norm of H. The reason

behind our approach is the following fact:

Typeset by AMS-TEX

1



2 III. FOURIER TRANSFORM ON L2(R)

Theorem 1. L1(R) ∩ L2(R) is dense in L2(R).

Proof. For any f ∈ L2(R), we only need to find a sequence of functions {fn}∞n=1 ⊂
L1(R) ∩ L2(R), such that ||f − fn||2 −→ 0 as n →∞. If for every n ∈ N, we let

fn(x) =

{
f(x) |x| ≤ n

0 |x| > n

Then for each n ∈ N, since
∫ ∞

−∞
|fn(x)|dx =

∫ ∞

−∞
|f(x)|χ[−n,n](x)dx

≤ (
∫ ∞

−∞
|f(x)|2dx)

1
2 · (

∫ ∞

−∞
|χ[−n,n](x)|2dx)

1
2 =

√
2n||f ||2 ≤ ∞,

∫ ∞

−∞
|fn(x)|2dx ≤

∫ ∞

−∞
|f(x)|2dx ≤ ∞,

so {fn}∞n=1 ⊂ L1(R) ∩ L2(R). Also since for all x ∈ R,

lim
n→∞

|f(x)− fn(x)|2 = 0,

|f(x)− fn(x)|2 ≤ 2(|f(x)|2 + |fn(x)|2) ≤ 4|f(x)|2

and 4|f |2 ∈ L1(R), so by Lebesque Dominant Convergence Theorem,

lim
n→∞

||f−fn||22 = lim
n→∞

∫ ∞

−∞
|f(x)−fn(x)|2dx =

∫ ∞

−∞
( lim
n→∞

|f(x)−fn(x)|2)dx = 0. ¤

Now we proceed to investigate the Fourier transform of functions in L1(R) ∩
L2(R). But first we need some lemmas.

Lemma 1. For f ∈ L2(R), let F (t) =
∫∞
−∞ f(u)f(t + u)du. Then

(a) For any t ∈ R, |F (t)| ≤ ||f ||22.

(b)F (t) is uniformly continuous on R.

Proof. (a) We compute, for any t ∈ R,

|F (t)| = |
∫ ∞

−∞
f(u)f(t + u)du| ≤

∫ ∞

−∞
|f(u)| · |f(t + u)|du

≤ (
∫ ∞

−∞
| f(u) |2 du)

1
2 · (

∫ ∞

−∞
| f(t + u) |2 du)

1
2 = ||f ||2 · ||f ||2.

(b) Similarly, for any t, η ∈ R,

|F (t + η)− F (t)| ≤
∫ ∞

−∞
|f(u)| · |f(t + u + η)− f(t + u)|du
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≤ (
∫ ∞

−∞
| f(u) |2 du)

1
2 · (

∫ ∞

−∞
| f(t + u + η)− f(t + u) |2 du)

1
2

= ||f ||2 · (
∫ ∞

−∞
| f(u + η)− f(u) |2 du)

1
2 .

Now according to some theorem in Lebesque integration,

lim
η→0

∫ ∞

−∞
| f(u + η)− f(u) |2 du = 0,

where the limit is independent of specific t ∈ R, so the conclusion follows. ¤

We change some conditions in Proposition 1 of last chapter to adapt to our needs

in this chapter. The proof follows the same line and is slightly simpler in certain

places. We leave the proof for the reader.

Proposition 1. Let f be a function bounded on R. f(x) is continuous at x = t.

Then

lim
α→0+

(f ∗Gα)(t) = f(t).

We also need an important lemma in Lebesque integration. The following is one

of its simplified version.

Fatou’s Lemma. Suppose that a sequence of Lebesque integrable functions {fn}∞n=1

satisfies the following conditions:

(a) fn(x) ≥ 0 for every n ∈ N and every x ∈ R.

(b) limn→∞ fn(x) exists for every x ∈ R.

(c) limn→∞
∫∞
−∞ fn(x)dx exists. Then

∫ ∞

−∞
( lim
n→∞

fn(x))dx ≤ lim
n→∞

∫ ∞

−∞
fn(x)dx.

Theorem 2. Let f ∈ L1(R) ∩ L2(R). Then f̂ ∈ L2(R). Furthermore ||f̂ ||22 =

2π||f ||22.

Proof. Since f ∈ L1(R) ∩ L2(R), by Theorem 2 in last Chapter, |f̂(ξ)|2 ≤ ||f ||21
for all ξ ∈ R. Also, for Gaussian function Gα, Ĝα(ξ) = e−αξ2

by Lemma 2 of last

chapter, so Ĝα ∈ L1(R). Hence as the product of a bounded function with a L1(R)

function, Ĝα|f̂ |2 ∈ L1(R). If we denote I =
∫∞
−∞ Ĝα(x)|f̂(x)|2dx, then

I =
∫ ∞

−∞
Ĝα(x) · f̂(x) · f̂(x)dx
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=
∫ ∞

−∞
Ĝα(x) · (

∫ ∞

−∞
f(u)e−iuxdu) · (

∫ ∞

−∞
f(v)e−ivxdv)dx

Now we start to change the order of integration, this process is justified by a triple

integral version of Fubini’s Theorem and the fact that
∫ ∞

−∞
Ĝα(x)·(

∫ ∞

−∞
|f(u)e−iux|du)·(

∫ ∞

−∞
|f(v)e−ivx|dv)dx ≤ ||f ||21

∫ ∞

−∞
Ĝα(x)dx < ∞.

We change the order in such a way that we integrate with respect to x first, then v,

and lastly u. Then by applying Theorem 4 of last chapter to Gα (note that Gα is

a continuous function, so Theorem 4 of last chapter applies), and making a change

of variable by letting t = v − u, and changing the order of integration again to

integrate with respect to u first and t next (why is the change of order justified?),

we can write

I = 2π

∫ ∞

−∞
(
∫ ∞

−∞
f(u)f(t + u)du)Gα(t)dt.

If we use the notation in Lemma 1 to denote F (t) =
∫∞
−∞ f(u)f(t + u)du, then

according to Lemma 1, F is bounded and continuous on R. And

I = 2π

∫ ∞

−∞
F (t)Gα(t)dt = 2π

∫ ∞

−∞
F (t)Gα(0− t)dt = 2π(F ∗Gα)(0).

Now by applying Proposition 1, we get

lim
α→0+

∫ ∞

−∞
Ĝα(x)|f̂(x)|2dx = lim

α→0+
2π(F ∗Gα)(0) = 2πF (0) = 2π||f ||22 < ∞.

Consequently, for any sequence {αn}∞n=1 of positive numbers with limn→∞ αn = 0,

we have

lim
n→∞

∫ ∞

−∞
Ĝαn(x)|f̂(x)|2dx = 2π||f ||22,

On the other hand, for all x ∈ R, limn→∞ Ĝαn(x) = limn→∞ e−αnx2
= 1. Now

Fatou’s Lemma would imply that f̂ ∈ L2(R). Indeed, we have that

∫ ∞

−∞
|f̂(x)|2dx =

∫ ∞

−∞
lim

n→∞
Ĝαn(x)|f̂(x)|2dx

≤ lim
n→∞

∫ ∞

−∞
Ĝαn

(x)|f̂(x)|2dx = 2π||f ||22 < ∞.

Since f ∈ L2(R), so |f̂(x)|2 ∈ L1(R). Recalling the Gaussian functions discussed in

Chapter 2, we see that Ĝαn(x)|f̂(x)|2 = e−αnx2 |f̂(x)|2 ≤ |f̂(x)|2. Hence,

∫ ∞

−∞
|f̂(x)|2dx =

∫ ∞

−∞
lim

n→∞
Ĝαn(x)|f̂(x)|2dx = lim

n→∞

∫ ∞

−∞
Ĝαn(x)|f̂(x)|2dx = 2π||f ||22.
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by Lebesque Dominant Convergence Theorem. ¤

Remark From the proof of Theorem 1, given any f ∈ L2(R), we can find a sequence

of functions {fn}∞n=1 ⊂ L1(R) ∩ L2(R) as defined in the same proof, such that

limn→∞ ||f − fn||22 = 0. This implies that {fn}∞n=1 is a Cauchy sequence in L2(R).

Now for any m,n ∈ N, certainly fm− fn ∈ L1(R)∩L2(R), also f̂m− f̂n = ̂fm − fn,

so according to Theorem 2, ||f̂m − f̂n||22 = || ̂fm − fn||22 = 2π||fm − fn||22. This

implies that {f̂n}∞n=1 is also a Cauchy sequence in L2(R), hence there is a function

g ∈ L2(R), such that {f̂n}∞n=1 converges to g under the norm of L2(R).

Moreover, suppose {hn}∞n=1 is another Cauchy sequence in L2(R) that converges

under the norm of L2(R) to the same given f ∈ L2(R), then {ĥn}∞n=1 converges

under the norm of L2(R) to the same g. Indeed, assume that {ĥn}∞n=1 converges

under the norm of L2(R) to some function g′ ∈ L2(R), then

||g − g′||2 ≤ ||g − f̂n + f̂n − ĥn + ĥn − g′||2

≤ ||g − f̂n||2 + ||f̂n − ĥn||2 + ||ĥn − g′||2

= ||g − f̂n||2 + 2π||fn − hn||2 + ||ĥn − g′||2.

Now using the fact that {f̂n}∞n=1 and {ĥn}∞n=1 converges under the norm of L2(R)

to the same f ∈ L2(R), for any ε > 0, we can show that ||g−g′||2 < ε, hence g = g′.

Details are left for the reader.

Definition 1. For any f ∈ L2(R), we define the Fourier transform of f as the limit

of the sequence {f̂n}∞n=1 under the norm of L2(R), where {fn}∞n=1 ∈ L1(R)∩L2(R)

is any sequence converges to f under the norm of L2(R). We also use the notation

F(f) or f̂ to denote such function g.

Now let us briefly discuss some properties of Fourier transform of functions in

L2(R).

Theorem 3. Parseval’s Identity For any f, g ∈ L2(R), we have 〈f, g〉 = 1
2π 〈f̂ , ĝ〉.

In particular, ||f ||2 =
√

1
2π ||f̂ ||2.

Proof. We prove the second conclusion first. To this end, we take any {fn}∞n=1 ∈
L1(R) ∩ L2(R) convergent to f under the norm of L2(R) , then by Theorem 2, for

each n ∈ N, ||fn||2 =
√

1
2π ||f̂n||2. Hence by triangle inequality of absolute value of

real numbers and triangle inequality of L2(R) norm, we have

∣∣||f ||2 −
√

1
2π
||f̂ ||2

∣∣ ≤
∣∣||f ||2 − ||fn||2

∣∣ +
∣∣
√

1
2π
||f̂n||2 −

√
1
2π
||f̂ ||2

∣∣
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≤ ||f − fn||2 +

√
1
2π
||f̂n − f̂ ||2.

Now for any ε > 0, we can show that
∣∣||f ||2 −

√
1
2π ||f̂ ||2

∣∣ < ε, hence ||f ||2 =√
1
2π ||f̂ ||2. Details are left for the reader. Once it is done, the first conclusion can

then be deduced with the help Lemma 2 below. ¤

Lemma 2. For any f, g ∈ L2(R),

〈f, g〉 =
||f + g||22 − ||f − g||22

4
+
||f − ig||22 − ||f + ig||22

4i
.

We leave the proof of Lemma 2, which is computational, as well as those of

the following two Lemmas to the reader. The way how the Fourier transform on

L2(R) is defined, allows generalization of many properties of the Fourier transform

on L1(R). We only list some in the following lemmas, the reader is encouraged to

explore and find more.

Lemma 3. For any f, g ∈ L2(R),
∫∞
−∞ f(x)ĝ(x)dx =

∫∞
−∞ f̂(x)g(x)dx. In other

words,

〈f, ĝ〉 = 〈f̂ , g〉.

For any f : R −→ C, we can define the function f− by f−(x) = f(−x). When

f ∈ L1(R), it can be shown that (̂f−) = (f̂)− and f̂ = (̂(f)−). They are also true

in L2(R). Since f− = (f)− obviously always holds regardless, we do not include it

in the lemma below, though it is also used in the last theorem of this chapter.

Lemma 4. For any f ∈ L2(R), define f− as f−(x) = f(−x). Then

(̂f−) = (f̂)−, f̂ = (̂(f)−).

Theorem 4. For any g ∈ L2(R), there exists a unique f ∈ L2(R), such that f̂ = g.

Proof. By looking at the Inverse Fourier transform defined in the last chapter, we

could guess that the correct way of expressing the ”inverse Fourier transform” of

g should be 1
2π (̂g−). First we try to show that if we take f(x) = 1

2π (̂g−)(x), then

f̂ = g. To this end, we only need to show that ||g − f̂ ||22 = 0. Indeed,

||g − f̂ ||22 = ||g||22 − 2Re〈g, f̂〉+ ||f̂ ||22 = ||g||22 − 2Re〈g, (̂(f)−)〉+ ||f̂ ||22
= ||g||22 − 2Re〈ĝ, ((f)−)〉+ ||f̂ ||22 = ||g||22 − 2Re〈ĝ, f−〉+ ||f̂ ||22
= ||g||22 − 2Re〈ĝ,

1
2π

ĝ〉+ ||f̂ ||22 =
1
2π
||ĝ||22 −

2
2π
||ĝ||22 + 2π||f ||22

= − 1
2π
||ĝ||22 +

1
2π
||ĝ−||22 = 0.

The proof of uniqueness of such f is left to the reader. ¤


